EconPapers    
Economics at your fingertips  
 

Statistical stability indices for LIME: Obtaining reliable explanations for machine learning models

Giorgio Visani, Enrico Bagli, Federico Chesani, Alessandro Poluzzi and Davide Capuzzo

Journal of the Operational Research Society, 2022, vol. 73, issue 1, 91-101

Abstract: Nowadays we are witnessing a transformation of the business processes towards a more computation driven approach. The ever increasing usage of Machine Learning techniques is the clearest example of such trend. This sort of revolution is often providing advantages, such as an increase in prediction accuracy and a reduced time to obtain the results. However, these methods present a major drawback: it is very difficult to understand on what grounds the algorithm took the decision. To address this issue we consider the LIME method. We give a general background on LIME then, we focus on the stability issue: employing the method repeated times, under the same conditions, may yield to different explanations. Two complementary indices are proposed, to measure LIME stability. It is important for the practitioner to be aware of the issue, as well as to have a tool for spotting it. Stability guarantees LIME explanations to be reliable therefore a stability assessment, made through the proposed indices, is crucial. As a case study, we apply both Machine Learning and classical statistical techniques to Credit Risk data. We test LIME on the Machine Learning algorithm and check its stability. Eventually, we examine the goodness of the explanations returned.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2020.1865846 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:1:p:91-101

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2020.1865846

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:73:y:2022:i:1:p:91-101