Sustainable warehouse evaluation with AHPSort traffic light visualisation and post-optimal analysis method
Alessio Ishizaka,
Sharfuddin Ahmed Khan,
Simonov Kusi-Sarpong and
Iram Naim
Journal of the Operational Research Society, 2022, vol. 73, issue 3, 558-575
Abstract:
Sustainable warehousing is essential for organisations to achieve overall supply chain sustainability. Warehousing facilities have the greatest potential for reducing socio-environmental impact. Yet, both research and practice have given relatively less attention to considering all aspects of sustainability in warehouses. In order to address this gap, this study proposes combining both input from professionals and from a literature survey of triple-bottom-line theory in order to develop a sustainable warehouse criteria framework, thus contributing to sustainable organisational warehouse evaluation. The method supporting the evaluation of this framework is based on the integration of a multicriteria AHPSort traffic light visualisation technique and novel post-optimal analysis. Furthermore, the authors deployed this framework and integrated methodology in an Indian manufacturing company to evaluate and classify seven of their warehouses for decision making. The traffic light visualisation technique presents and conveys the results better than numbers. Finally, the new post-optimal analysis provides recommendations for cost efficient improvements. The findings of this study present valuable insights and guidelines for industrial managers and practitioners, especially those from the Indian manufacturing industry, for sustainable warehouse decision-making, and for improving their overall corporate sustainability performance.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2020.1848361 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:3:p:558-575
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2020.1848361
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().