A heuristic approach for the distance-based critical node detection problem in complex networks
Glory Uche Alozie,
Ashwin Arulselvan,
Kerem Akartunalı and
Eduardo L. Pasiliao
Journal of the Operational Research Society, 2022, vol. 73, issue 6, 1347-1361
Abstract:
The distance-based critical node problem involves identifying a subset of nodes in a network whose removal minimises a pre-defined distance-based connectivity measure. Having the classical critical node problem as a special case, the distance-based critical node problem is computationally challenging. In this article, we study the distance-based critical node problem from a heuristic algorithm perspective. We consider the distance-based connectivity objective whose goal is to minimise the number of node pairs connected by a path of length at most k, subject to budgetary constraints. We propose a centrality based heuristic which combines a backbone-based crossover procedure to generate good offspring solutions and a centrality-based neighbourhood search to improve the solution. Extensive computational experiments on real-world and synthetic graphs show the effectiveness of the developed heuristic in generating good solutions when compared to exact solution. Our empirical results also provide useful insights for future algorithm development.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2021.1913078 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:6:p:1347-1361
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2021.1913078
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().