Improved genetic-simulated annealing algorithm for seru loading problem with downward substitution under stochastic environment
Zhe Zhang,
Lili Wang,
Xiaoling Song,
Huijun Huang and
Yong Yin
Journal of the Operational Research Society, 2022, vol. 73, issue 8, 1800-1811
Abstract:
To cope with fluctuating production demands in the volatile markets, a new-type seru production system is adopted due to its efficiency, flexibility, and responsiveness advantages. Seru loading problems are receiving tremendous attention, however, full downward substitution and uncertainties in product demand and yield are seldom considered. Accordingly, a combinatorial optimization seru loading model is constructed to address these concerns so as to maximize system profits, which, however, is notoriously challenging to solve with exact algorithms. Therefore, an improved genetic-simulated annealing algorithm (IGSA) is designed to obtain optimal loading results. To validate the effectiveness and efficacy of the proposed IGSA, algorithm comparisons with adaptive genetic algorithm (A-GA) and simulated annealing (SA) algorithm are conducted. Results show that the proposed model is effective for addressing the seru loading problem and IGSA is robust in solving the seru loading model.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2021.1939172 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:8:p:1800-1811
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2021.1939172
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().