EconPapers    
Economics at your fingertips  
 

Improved genetic-simulated annealing algorithm for seru loading problem with downward substitution under stochastic environment

Zhe Zhang, Lili Wang, Xiaoling Song, Huijun Huang and Yong Yin

Journal of the Operational Research Society, 2022, vol. 73, issue 8, 1800-1811

Abstract: To cope with fluctuating production demands in the volatile markets, a new-type seru production system is adopted due to its efficiency, flexibility, and responsiveness advantages. Seru loading problems are receiving tremendous attention, however, full downward substitution and uncertainties in product demand and yield are seldom considered. Accordingly, a combinatorial optimization seru loading model is constructed to address these concerns so as to maximize system profits, which, however, is notoriously challenging to solve with exact algorithms. Therefore, an improved genetic-simulated annealing algorithm (IGSA) is designed to obtain optimal loading results. To validate the effectiveness and efficacy of the proposed IGSA, algorithm comparisons with adaptive genetic algorithm (A-GA) and simulated annealing (SA) algorithm are conducted. Results show that the proposed model is effective for addressing the seru loading problem and IGSA is robust in solving the seru loading model.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2021.1939172 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:8:p:1800-1811

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2021.1939172

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:73:y:2022:i:8:p:1800-1811