EconPapers    
Economics at your fingertips  
 

Laplacian large margin distribution machine for semi-supervised classification

Jingyue Zhou, Ye Tian, Jian Luo and Qianru Zhai

Journal of the Operational Research Society, 2022, vol. 73, issue 8, 1889-1904

Abstract: Semi-Supervised Learning (SSL) has attracted much attention in the field of machine learning and data mining. As an extension of Support Vector Machine (SVM), the Semi-Supervised Support Vector Machine (S3VM) was proposed for SSL. Recent studies have disclosed that optimising the margin distribution is more crucial than maximising the minimum margin in generating a better classification. However, the existing S3VM models still follow the idea of maximising the minimum margin. Therefore, this paper proposes a novel Laplacian Large margin Distribution Machine (LapLDM) for SSL to enhance the classification performance. This method can optimise the margin distribution by maximising the first-order (margin mean) and minimising the second-order (margin variance) statistics of margins, and exploit the geometry information of marginal distribution embedded in the unlabelled data through the Laplacian regularizer. Then this paper develops a Preconditioned Conjugate Gradient (PCG) algorithm to solve the nonlinear LapLDM model on those regular-scaled data sets and a Stochastic Gradient Descent with Variance Reduction (SVRG) algorithm to solve the linear LapLDM model on those large-scaled data sets. These algorithms can accelerate the implementing efficiencies of proposed models and make them available for those large-scaled problems. Finally, the numerical results on four artificial and fourteen public benchmark data sets demonstrate that the LapLDM is superior to some well-known S3VM models.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2021.1931497 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:8:p:1889-1904

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2021.1931497

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:73:y:2022:i:8:p:1889-1904