EconPapers    
Economics at your fingertips  
 

Stochastic data envelopment analysis in the presence of undesirable outputs

Alireza Amirteimoori, Vincent Charles and Saber Mehdizadeh

Journal of the Operational Research Society, 2023, vol. 74, issue 12, 2619-2632

Abstract: In contrast to traditional efficiency analysis models in the field of data envelopment analysis (DEA) with undesirable outputs, this paper proposes efficiency models with the joint use of weak and managerial disposability assumptions. First, we develop a deterministic efficiency analysis model to deal with undesirable outputs in a production process. Due to the importance of data variability and uncertainty, the technical efficiency analysis is sensitive to these variations. Using chance-constrained programming theory, we extend our proposed deterministic model to a stochastic production system. To demonstrate the real-world applicability of our proposed models, we employ an empirical application based on actual Iranian gas distribution company data. Although this empirical application is illustrative, our proposed scheme could be used to evaluate the relative efficiency of many real-life production units whose underlying production systems are frequently stochastic.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2023.2172366 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:74:y:2023:i:12:p:2619-2632

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2023.2172366

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:74:y:2023:i:12:p:2619-2632