EconPapers    
Economics at your fingertips  
 

Prediction-driven collaborative emergency medical resource allocation with deep learning and optimization

Zhen-Yu Chen, Minghe Sun and Xi-Xi Han

Journal of the Operational Research Society, 2023, vol. 74, issue 2, 590-603

Abstract: This study addresses two key issues, ie, the “cold-start problem” in transmission prediction of new or rare epidemics and the collaborative allocation of emergency medical resources considering multiple objectives. These two issues have not yet been well addressed in data-driven emergency medical resource allocation systems. A decision support prediction-then-optimization framework combing deep learning and optimization is developed to address these two issues. Two transfer learning based convolutional neural network models are built for epidemic transmission predictions in the initial and the subsequent outbreak regions using transfer learning to deal with the “cold-start problem”. A prediction-driven collaborative emergency medical resource allocation model is built to address the issue of collaborative decisions by simultaneously considering the inter- and intra-echelon resource flows in a multi-echelon system and considering the efficiency and fairness as the objective functions. A case study of the COVID-19 pandemic shows that combining transfer learning and convolutional neural networks can improve the performances of epidemic transmission predictions, and good predictions can improve both the efficiency and fairness of emergency medical resource allocation decisions. Moreover, the computational results show that the prediction errors are asymmetrically amplified in the optimization stage, and the shortage of the resource reserve quantity mediates the asymmetrical amplification effect.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2022.2101953 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:74:y:2023:i:2:p:590-603

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2022.2101953

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:74:y:2023:i:2:p:590-603