EconPapers    
Economics at your fingertips  
 

Simulation optimization using stochastic kriging with robust statistics

Linhan Ouyang, Mei Han, Yizhong Ma, Min Wang and Chanseok Park

Journal of the Operational Research Society, 2023, vol. 74, issue 3, 623-636

Abstract: Metamodels are widely used as fast surrogates to facilitate the optimization of simulation models. Stochastic kriging (SK) is an effective metamodeling tool for a mean response surface implied by stochastic simulation. In SK, it is usually assumed that the experimental data are normally distributed and uncontaminated. However, these assumptions can be easily violated in many practical applications. This paper proposes a new type of SK for simulation models that may have non-Gaussian responses; this new SK uses robust estimators of location (or central tendency) and scale (or variability) that are well-known in the literature on robust statistics. Statistical properties of the robust estimators used in this paper are briefly analyzed and the performances of the proposed methods are compared through numerical examples of different features. The comparison results show that the proposed robust SK with the robust estimators is quite efficient, no matter whether the standard assumptions hold or not.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2022.2055498 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:74:y:2023:i:3:p:623-636

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2022.2055498

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:74:y:2023:i:3:p:623-636