Shot-noise cojumps: Exact simulation and option pricing
Yan Qu,
Angelos Dassios and
Hongbiao Zhao
Journal of the Operational Research Society, 2023, vol. 74, issue 3, 647-665
Abstract:
We consider a parsimonious framework of jump-diffusion models for price dynamics with stochastic price volatilities and stochastic jump intensities in continuous time. They account for conditional heteroscedasticity and also incorporate key features appearing in financial time series of price volatilities and jump intensities, such as persistence of contemporaneous jumps (cojumps), mean reversion and feedback effects. More precisely, the stochastic variance and stochastic intensity are jointly modelled by a generalised bivariate shot-noise process sharing common jump arrivals with any non-negative jump-size distributions. This framework covers many classical and important models in the literature. The main contribution of this paper is that, we develop a very efficient scheme for its exact simulation based on perfect decomposition where neither numerical inversion nor acceptance/rejection scheme is required, which means that it is not only accurate but also the efficiency would not be sensitive to the parameter choice. Extensive numerical implementations and tests are reported to demonstrate the accuracy and effectiveness of this scheme. Our algorithm substantially outperforms the classical discretisation scheme. Moreover, we unbiasedly estimate the prices of discrete-barrier European options to show the applicability and flexibility of our algorithms.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2022.2077660 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:74:y:2023:i:3:p:647-665
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2022.2077660
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().