Minimum cost consensus model with loss aversion based large-scale group decision making
Yingying Liang,
Yanbing Ju,
Jindong Qin,
Witold Pedrycz and
Peiwu Dong
Journal of the Operational Research Society, 2023, vol. 74, issue 7, 1712-1729
Abstract:
In minimum cost consensus problems, to accomplish the group consensus, decision makers accommodate their initial discrepant opinions based on the unit adjustment costs. During this process, decision makers may exhibit loss aversion, which results in extra expenses when participants feel loss in contrast to their reference opinion adjustments. Existing minimum cost consensus models pay little attention to the loss-averse preference. Hence, to fill up this gap, a minimum cost consensus model with loss aversion (MCCM-LA) is established and the desired properties are analyzed. To manage large-scale group decision making problems, we first propose an integrated opinion similarity, connectivity similarity and behavior similarity clustering algorithm to divide decision makers into multiple subgroups. Balancing the individual adjustment willingness and consensus reaching efficiency, a two-stage consensus reaching mechanism is further designed based on MCCM-LA to realize the accordant opinion. Finally, the effectiveness and feasibility of the proposed method are demonstrated by sensitivity and comparative analyses with an illustrative example.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2022.2110002 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:74:y:2023:i:7:p:1712-1729
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2022.2110002
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().