Consensus reaching for ordinal classification-based group decision making with heterogeneous preference information
Zhuolin Li,
Zhen Zhang and
Wenyu Yu
Journal of the Operational Research Society, 2024, vol. 75, issue 2, 224-245
Abstract:
In group decision making (GDM), there may exist some problems that need to assign alternatives to some predefined ordered categories, which are called ordinal classification-based GDM problems. To obtain classification results that can be accepted by most decision makers (DMs), it is necessary to implement a consensus reaching process for ordinal classification-based GDM problems. In this paper, we study consensus reaching models for a new type of ordinal classification-based GDM problem, in which DMs do not provide criteria weights and category cardinalities but provide indirect and imprecise heterogeneous preference information. To do so, a consistency verification method is first proposed to check whether each DM’s preference information is consistent and then a minimum adjustment optimization model is developed to modify DMs’ inconsistent preference information. Afterwards, we establish some optimization models to obtain each DM’s possible categories for alternatives. Followed by this, we define the consensus levels of DMs and devise some optimization models to assist DMs in adjusting alternatives’ classification results and DMs’ preference information at the same time. Furthermore, a maximum support degree-based method is provided to determine the consensual classification result for alternatives. Finally, a numerical application and some sensitivity analysis are provided to justify the proposed models.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2023.2186806 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:75:y:2024:i:2:p:224-245
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2023.2186806
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().