EconPapers    
Economics at your fingertips  
 

Rail wear and remaining life prediction using meta-models

Annemieke Meghoe, Richard Loendersloot and Tiedo Tinga

International Journal of Rail Transportation, 2020, vol. 8, issue 1, 1-26

Abstract: The study presented in this paper proposes a method to estimate the Remaining Useful Life (RUL) of railway tracks determined by wear and taking into account various track geometry and usage profile parameters. The relation between these parameters and rail wear is established by means of meta-models derived from physical models. These models are obtained with regression analysis where the best fit is found from a relatively large set of numerical experiments for various scenarios. The specific parameter settings for these scenarios are obtained by using the Latin Hypercube Sampling (LHS) method. Furthermore, for the rail profile, which is one of the input parameters for the meta-model, it is shown that the evolution due to wear in moderate curves can be characterized by only one parameter. The findings in this work including are valuable for Infrastructure Managers (IMs) and can easily be implemented in maintenance decision support tools.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/23248378.2019.1621780 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjrtxx:v:8:y:2020:i:1:p:1-26

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjrt20

DOI: 10.1080/23248378.2019.1621780

Access Statistics for this article

International Journal of Rail Transportation is currently edited by Wanming Zhai and Kelvin C. P. Wang

More articles in International Journal of Rail Transportation from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjrtxx:v:8:y:2020:i:1:p:1-26