EconPapers    
Economics at your fingertips  
 

Modelling presymptomatic infectiousness in COVID-19

Russell Cheng, Christopher Dye, John Dagpunar and Brian Williams

Journal of Simulation, 2023, vol. 17, issue 5, 532-543

Abstract: This paper considers SEPIR, an extension of the well-known SEIR continuous simulation compartment model. Both models can be fitted to real data as they include parameters that can be estimated from the data. SEPIR deploys an additional presymptomatic infectious compartment, not modelled in SEIR but known to exist in COVID-19. This stage can also be fitted to data. We focus on how to fit SEPIR to a first wave of COVID. Both SEIR and SEPIR and the existing SEIR models assume a homogeneous mixing population with parameters fixed. Moreover, neither includes dynamically varying control strategies deployed against the virus. If either model is to represent more than just a single wave of the epidemic, then the parameters of the model would have to be time dependent. In view of this, we also show how reproduction numbers can be calculated to investigate the long-term overall outcome of an epidemic.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/17477778.2023.2190467 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjsmxx:v:17:y:2023:i:5:p:532-543

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjsm20

DOI: 10.1080/17477778.2023.2190467

Access Statistics for this article

Journal of Simulation is currently edited by Christine Currie

More articles in Journal of Simulation from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjsmxx:v:17:y:2023:i:5:p:532-543