Cloud manufacturing service composition based on QoS with geo-perspective transportation using an improved Artificial Bee Colony optimisation algorithm
Jorick Lartigau,
Xiaofei Xu,
Lanshun Nie and
Dechen Zhan
International Journal of Production Research, 2015, vol. 53, issue 14, 4380-4404
Abstract:
Cloud Manufacturing (CMfg) ambitions to create dedicated manufacturing clouds (i.e. virtual enterprises) for complex manufacturing demands through the association of various service providers’ resources and capabilities. In order to insure a dedicated manufacturing cloud to match the level of customer’s requirements, the cloud service selection and composition appear to be a decisive process. This study takes common aspects of cloud services into consideration such as quality of service (QoS) parameters but extend the scope to the physical location of the manufacturing resources. Unlike the classic service composition, manufacturing brings additional constraints. Consequently, we propose a method based on QoS evaluation along with the geo-perspective correlation from one cloud service to another for transportation impact analysis. We also insure the veracity of the manufacturing time evaluation by resource availability overtime. Since the composition is an exhaustive process in terms of computational time consumption, the proposed method is optimised through an adapted Artificial Bee Colony (ABC) algorithm based on initialisation enhancement. Finally, the efficiency and precision of our method are discussed furthermore in the experiments chapter.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1005765 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:53:y:2015:i:14:p:4380-4404
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2015.1005765
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().