EconPapers    
Economics at your fingertips  
 

Run length quantiles of EWMA control charts monitoring normal mean or/and variance

Sven Knoth

International Journal of Production Research, 2015, vol. 53, issue 15, 4629-4647

Abstract: Exponentially weighted moving average (EWMA) control charts are well-established devices for monitoring process stability. Typically, control charts are evaluated by considering their Average Run Length (ARL), that is the expected number of observations or samples until the chart signals. Because of the limitations of an average, various papers also dealt with the run length distribution and quantiles. Going beyond these papers, we develop algorithms for and evaluate the quantile performance of EWMA control charts with variance adjusted control limits and with fast initial response features, of EWMA charts based on the sample variance, and of EWMA charts simultaneously monitoring mean and variance. Additionally, for the mean charts we consider medium, late and very late process changes and their impact on appropriately conditioned run length quantiles. It is demonstrated that considering run length quantiles can protect from constructing distorted EWMA designs while optimising their zero-state ARL performance. The implementation of all the considered measures in the R package ‘spc’ allows any control chart user to consider EWMA schemes from the run length quantile prospective in an easy way.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1005253 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:53:y:2015:i:15:p:4629-4647

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1005253

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:53:y:2015:i:15:p:4629-4647