An evolutionary algorithm for a new multi-objective location-inventory model in a distribution network with transportation modes and third-party logistics providers
S. Mohammad Arabzad,
Mazaher Ghorbani and
Reza Tavakkoli-Moghaddam
International Journal of Production Research, 2015, vol. 53, issue 4, 1038-1050
Abstract:
This paper proposes a multi-objective optimisation algorithm for solving the new multi-objective location-inventory problem (MOLIP) in a distribution centre (DC) network with the presence of different transportation modes and third-party logistics (3PL) providers. 3PL is an external company that performs all or part of a company’s logistics functions. In order to increase the efficiency and responsiveness in a supply chain, it is assumed that 3PL is responsible to manage inventory in DCs and deliver products to customers according to the provided plan. DCs are determined so as to simultaneously minimise three conflicting objectives; namely, total costs, earliness and tardiness, and deterioration rate. In this paper, a non-dominated sorting genetic algorithm (NSGA-II) is proposed to perform high-quality search using two-parallel neighbourhood search procedures for creating initial solutions. The potential of this algorithm is evaluated by its application to the numerical example. Then, the obtained results are analysed and compared with multi-objective simulated annealing (MOSA). It is concluded that this algorithm is capable of generating a set of alternative DCs considering the optimisation of multiple objectives, significantly improving the decision-making process involved in the distribution network design.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2014.938836 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:53:y:2015:i:4:p:1038-1050
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2014.938836
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().