Cross-trained workers scheduling for field service using improved NSGA-II
Zhitao Xu,
X.G. Ming,
Maokuan Zheng,
Miao Li,
Lina He and
Wenyan Song
International Journal of Production Research, 2015, vol. 53, issue 4, 1255-1272
Abstract:
The proper balancing of geographically distributed task schedules and the associated workforce distributions are critical determinants of productivity in any people-centric production environment. The paper has investigated the cross-trained workers scheduling problem considering the qualified personal allocation and temporally cooperation of engineers simultaneously. A 0–1 programming model is developed and the non-dominated sorting genetic algorithm-II (NSGA-II) is adopted to deal with the NP-hard problem. In order to enforce the NSGA-II, significant improvements are made to function the approach in a more efficient way. It is observed that the improved NSGA-II outperforms the original NSGA-II in the experimental test. The promising outcomes of the formulation in the experiment make its implementation easily customisable and transferable for solving other intricate problems in the context of skilled workforce scheduling. Furthermore, the modified NSGA II can be used as an efficient and effective tool for other multiobjective optimisation problems.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2014.955923 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:53:y:2015:i:4:p:1255-1272
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2014.955923
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().