Combined scheduling algorithm for re-entrant batch-processing machines in semiconductor wafer manufacturing
Wenyou Jia,
Zhibin Jiang and
You Li
International Journal of Production Research, 2015, vol. 53, issue 6, 1866-1879
Abstract:
In this paper, a new combined scheduling algorithm is proposed to address the problem of minimising total weighted tardiness on re-entrant batch-processing machines (RBPMs) with incompatible job families in the semiconductor wafer fabrication system (SWFS). The general combined scheduling algorithm forms batches according to parameters from the real-time scheduling simulation platform (ReS2), and then sequences batches through slack-based mixed integer linear programming model (S-MILP), which is defined as batch-oriented combined scheduling algorithm. The new combined scheduling algorithm obtains families’ parameters from ReS2 and then sequences these families through modified S-MILP, which is defined as family-oriented combined scheduling algorithm. With rolling horizon control strategy, two combined scheduling algorithms can update RBPMs scheduling continually. The experiments are implemented on ReS2 of SWFS and ILOG CPLEX, respectively. The results demonstrate the effectiveness of our proposed methods.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2014.965355 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:53:y:2015:i:6:p:1866-1879
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2014.965355
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().