A particle swarm optimisation for the no-wait flow shop problem with due date constraints
Hamed Samarghandi
International Journal of Production Research, 2015, vol. 53, issue 9, 2853-2870
Abstract:
This paper considers the no-wait flow shop scheduling problem with due date constraints. In the no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, a due date is associated with the completion of each job. The considered objective function is makespan. This problem is proved to be strongly NP-Hard. In this paper, a particle swarm optimisation (PSO) is developed to deal with the problem. Moreover, the effect of some dispatching rules for generating initial solutions are studied. A Taguchi-based design of experience approach has been followed to determine the effect of the different values of the parameters on the performance of the algorithm. To evaluate the performance of the proposed PSO, a large number of benchmark problems are selected from the literature and solved with different due date and penalty settings. Computational results confirm that the proposed PSO is efficient and competitive; the developed framework is able to improve many of the best-known solutions of the test problems available in the literature.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1007245 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:53:y:2015:i:9:p:2853-2870
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2015.1007245
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().