An adaptive step-down procedure for fault variable identification
Jinho Kim,
Myong K. Jeong,
Elsayed A. Elsayed,
K.N. Al-Khalifa and
A.M.S. Hamouda
International Journal of Production Research, 2016, vol. 54, issue 11, 3187-3200
Abstract:
In a process with a large number of process variables (high-dimensional process), identifying which variables cause an out-of-control signal is a challenging issue for quality engineers. In this paper, we propose an adaptive step-down procedure using conditional T -super-2 statistic for fault variable identification. While existing procedures focus on selecting variables that have strong evidence of a change, the proposed step-down procedure selects a variable having the weakest evidence of a change at each step based on the variables that are selected in previous steps. The information of selected unchanged variables is effectively utilised in obtaining a powerful conditional T -super-2 test statistic for identifying the changed elements of the mean vector. The proposed procedure is designed to utilise the correlation information between fault and non-fault variables for the efficient fault variables identification. Further, the simulation results show that the proposed procedure has the better diagnostic performance compared with existing methods in terms of fault variable identification and computational complexity, especially when the number of the variables is high and the number of fault variables is small.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1076948 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:11:p:3187-3200
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2015.1076948
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().