Chance-constrained formulations in rolling horizon production planning: an experimental study
Po-Chen Lin and
Reha Uzsoy
International Journal of Production Research, 2016, vol. 54, issue 13, 3927-3942
Abstract:
Rolling horizon procedures, where an infinite horizon problem is approximated by the solution to a sequence of finite horizon problems, are common in production planning practice and research. However, these procedures also lead to frequent changes in planned release and production quantities, a phenomenon referred to as nervousness. We examine the performance of two chance-constrained production planning models developed for systems with stochastic demand in a rolling horizon environment, and find that these formulations significantly reduce planned release changes (nervousness) while also improving cost and service-level performance.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1165356 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:13:p:3927-3942
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1165356
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().