EconPapers    
Economics at your fingertips  
 

Differential evolution-based feature selection and parameter optimisation for extreme learning machine in tool wear estimation

Wen-An Yang, Qiang Zhou and Kwok-Leung Tsui

International Journal of Production Research, 2016, vol. 54, issue 15, 4703-4721

Abstract: Cutting tool wear degrades the product quality in manufacturing processes. Hence, real-time online estimation of tool wear is important for suggesting a tool replacement before the wear limit is reached, in order to protect the workpiece and the CNC machine from damage and breakdown. In this study, using both statistical features and wavelet features extracted from sensor signals, an adaptive evolutionary extreme learning machine (ELM) learning paradigm is developed for tool wear estimation in high-speed milling process. In the proposed method, a discrete differential evolution (DE) algorithm is used to select input features for the ELM, and a continuous DE algorithm is used for parameter optimisation of the mixed kernel function for the ELM. The experimental results indicate that the proposed adaptive evolutionary ELM-based tool wear estimation model can effectively estimate the tool wear in high-speed milling process. Empirical comparisons show that the proposed model performs better than existing approaches in estimating the tool wear.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1111534 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:15:p:4703-4721

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1111534

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:15:p:4703-4721