EconPapers    
Economics at your fingertips  
 

To select or to combine? The inventory performance of model and expert forecasts

Xun Wang and Fotios Petropoulos

International Journal of Production Research, 2016, vol. 54, issue 17, 5271-5282

Abstract: Demand forecasting is a crucial input of any inventory system. The quality of the forecasts should be evaluated not only in terms of forecast accuracy or bias but also with regards to their inventory implications, which include the impact on the total inventory cost, the achieved service levels and the variance of orders and inventory. Forecast selection and combination are two very widely applied forecasting strategies that have shown repeatedly to increase the forecasting performance. However, the inventory performance of these strategies remains unexplored. We empirically examine the effects of forecast selection and combination on inventory when two sources of forecasts are available. We employ a large data-set that contains demands and (statistical and judgmental) forecasts for multiple pharmaceutical stock keeping units. We show that forecast selection and simple combination increase simultaneously the forecasting and inventory performance.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1167983 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:17:p:5271-5282

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2016.1167983

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:17:p:5271-5282