EconPapers    
Economics at your fingertips  
 

A learning model for the allocation of training hours in a multistage setting

Francesco Lolli, Rita Gamberini, Claudio Giberti, Mauro Gamberi, Marco Bortolini and Emanuele Bruini

International Journal of Production Research, 2016, vol. 54, issue 19, 5697-5707

Abstract: In line with the continuous improvement theory, the learning phenomenon is often incorporated into models for predicting the evolution of the unitary quality costs. In this paper, the quality metric predicted is the rate of supplied non-conforming units through a learning process with autonomous and induced sources of experience. The former is simply learning by doing, i.e. supplying, whilst the latter is driven by the allocation of training hours to suppliers. A revised learning model with time-varying learning rates is proposed for embracing both these effects into a multistage assembly/production setting. A single-period prevention–appraisal–failure cost function is achieved, and the sample inspection rates adopted among suppliers are also considered in order to evaluate their effect. If these sample rates are given, the goal of allocating the training hours among suppliers is pursued by means of integer linear programming. Otherwise, a mixed-integer quadratic problem arises for the concurrent allocation of training hours and inspection sample rates among suppliers. A case study is finally carried out for demonstrating the applicability of the model, as well as for providing managerial insights.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1129466 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:19:p:5697-5707

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1129466

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:19:p:5697-5707