EconPapers    
Economics at your fingertips  
 

How heterogeneity influences condition-based maintenance for gamma degradation process

Linmiao Zhang, Yong Lei and Houcai Shen

International Journal of Production Research, 2016, vol. 54, issue 19, 5829-5841

Abstract: In many applications, units from the same population exhibit heterogeneity that they degrade with different rates due to random factors. This article studies how this heterogeneity in degradation influences condition-based maintenance (CBM) policy. Many CBM polices are developed based on gamma process because it is popularly used to characterise monotone degradation processes. In this study, we also model the unit’s degradation by gamma process. To account for the heterogeneity among units’ degradation, we incorporate a random effect parameter in the gamma process. Then the optimal policy for CBM is obtained through Markov decision process. We show that when heterogeneity exists, the transition probability of degradation state depends on both unit’s age and observed degradation level. And consequently, the optimal maintenance policy is a monotone control limit policy. We conduct extensive numerical experiments to validate and demonstrate our findings in depth.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1181282 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:19:p:5829-5841

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2016.1181282

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:19:p:5829-5841