EconPapers    
Economics at your fingertips  
 

Uncertainty quantification in dynamic system risk assessment: a new approach with randomness and fuzzy theory

Houssein Abdo and Jean-Marie Flaus

International Journal of Production Research, 2016, vol. 54, issue 19, 5862-5885

Abstract: Quantifying uncertainty during risk analysis has become an important part of effective decision-making and health risk assessment. However, most risk assessment studies struggle with uncertainty analysis and yet uncertainty with respect to model parameter values is of primary importance. Capturing uncertainty in risk assessment is vital in order to perform a sound risk analysis. In this paper, an approach to uncertainty analysis based on the fuzzy set theory and the Monte Carlo simulation is proposed. The question then arises as to how these two modes of representation of uncertainty can be combined for the purpose of estimating risk. The proposed method is applied to a propylene oxide polymerisation reactor. It takes into account both stochastic and epistemic uncertainties in the risk calculation. This study explores areas where random and fuzzy logic models may be applied to improve risk assessment in industrial plants with a dynamic system (change over time). It discusses the methodology and the process involved when using random and fuzzy logic systems for risk management.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1184348 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:19:p:5862-5885

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2016.1184348

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:19:p:5862-5885