A big data MapReduce framework for fault diagnosis in cloud-based manufacturing
Ajay Kumar,
Ravi Shankar,
Alok Choudhary and
Lakshman S. Thakur
International Journal of Production Research, 2016, vol. 54, issue 23, 7060-7073
Abstract:
This research develops a MapReduce framework for automatic pattern recognition based on fault diagnosis by solving data imbalance problem in a cloud-based manufacturing (CBM). Fault diagnosis in a CBM system significantly contributes to reduce the product testing cost and enhances manufacturing quality. One of the major challenges facing the big data analytics in CBM is handling of data-sets, which are highly imbalanced in nature due to poor classification result when machine learning techniques are applied on such data-sets. The framework proposed in this research uses a hybrid approach to deal with big data-set for smarter decisions. Furthermore, we compare the performance of radial basis function-based Support Vector Machine classifier with standard techniques. Our findings suggest that the most important task in CBM is to predict the effect of data errors on quality due to highly imbalance unstructured data-set. The proposed framework is an original contribution to the body of literature, where our proposed MapReduce framework has been used for fault detection by managing data imbalance problem appropriately and relating it to firm’s profit function. The experimental results are validated using a case study of steel plate manufacturing fault diagnosis, with crucial performance matrices such as accuracy, specificity and sensitivity. A comparative study shows that the methods used in the proposed framework outperform the traditional ones.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1153166 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:23:p:7060-7073
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1153166
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().