EconPapers    
Economics at your fingertips  
 

Virtual engineering process (VEP): a knowledge representation approach for building bio-inspired distributed manufacturing DNA

Syed Imran Shafiq, Cesar Sanin, Carlos Toro and Edward Szczerbicki

International Journal of Production Research, 2016, vol. 54, issue 23, 7129-7142

Abstract: The objective of this research is to provide a user-friendly and effective way of representing engineering processes for distributed manufacturing systems so that they can develop, accumulate and share knowledge. The basic definition and principle of the approach is introduced first and then the prototype version of the system is developed and demonstrated with case studies, which verify the feasibility of the proposed approach. This paper proposes a novel concept of virtual engineering process (VEP), which is experience-based knowledge representation of engineering processes. VEP is an extension of our previous work on virtual engineering object (VEO). VEP model includes complete process knowledge required to manufacture a component. This knowledge is captured from three distinctive aspects related to manufacturing. First, information about the manufacturing operations involved. Second, information about the resources/machines required to perform operations and third, information about process level decisions that are taken. It also aims to combine/share experience of engineering objects, manufacturing processes, and systems. It applies bio-inspired knowledge engineering approach called decisional DNA and set of experience-based knowledge representation.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1125545 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:23:p:7129-7142

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1125545

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:23:p:7129-7142