Optimal design of a distribution-free quality control scheme for cost-efficient monitoring of unknown location
Chenglong Li,
Amitava Mukherjee,
Qin Su and
Min Xie
International Journal of Production Research, 2016, vol. 54, issue 24, 7259-7273
Abstract:
Traditionally, a cost-efficient control chart for monitoring product quality characteristic is designed using prior knowledge regarding the process distribution. In practice, however, the functional form of the underlying process distribution is rarely known a priori. Therefore, the nonparametric (distribution-free) charts have gained more attention in the recent years. These nonparametric schemes are statistically designed either with a fixed in-control average run length or a fixed false alarm rate. Robust and cost-efficient designs of nonparametric control charts especially when the true process location parameter is unknown are not adequately addressed in literature. For this purpose, we develop an economically designed nonparametric control chart for monitoring unknown location parameter. This work is based on the Wilcoxon rank sum (hereafter WRS) statistic. Some exact and approximate procedures for evaluation of the optimal design parameters are extensively discussed. Simulation results show that overall performance of the exact procedure based on bootstrapping is highly encouraging and robust for various continuous distributions. An approximate and simplified procedure may be used in some situations. We offer some illustration and concluding remarks.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1173254 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:24:p:7259-7273
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1173254
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().