Cellular manufacturing system design considering machines reliability and parts alternative process routings
Farouq Alhourani
International Journal of Production Research, 2016, vol. 54, issue 3, 846-863
Abstract:
Cell formation is an important problem in the design of cellular manufacturing systems (CMS). Most cell formation methods appeared in the literature assume that each part has one process plan, and all machines are 100% reliable with unlimited capacity. However, this is not realistic in manufacturing systems. Considering machines reliability in addition to machines capacity and machine duplicates during the part route selection process help to obtain better machine grouping and minimum total cost for CMS. Considering these factors in addition to operations sequence and production volumes makes the problem more complex but more realistic. Most of the methods appeared in the literature to solve such problems use mathematical programming procedures that take large amount of computational efforts. Procedures using similarity coefficient method are more flexible in incorporating various important production data and lend easily to computer applications. A new similarity coefficient equation that incorporates all these production factors is developed. Also, a procedure that captures the similarity between machine groups and minimises the total CMS cost is developed. The procedure utilises functional cells to eliminate intercellular moves and achieve ‘one-piece flow’ practise. The methodology is compared with other methods in the literature and found to be more effective.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1083626 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:3:p:846-863
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2015.1083626
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().