A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines
Masood Fathi,
Victoria Rodríguez,
Dalila B.M.M. Fontes and
Maria Jesus Alvarez
International Journal of Production Research, 2016, vol. 54, issue 3, 878-893
Abstract:
The Assembly Line Part Feeding Problem (ALPFP) is a complex combinatorial optimisation problem concerned with the delivery of the required parts to the assembly workstations in the right quantities at the right time. Solving the ALPFP includes simultaneously solving two sub-problems, namely tour scheduling and tow-train loading. In this article, we first define the problem and formulate it as a multi-objective mixed-integer linear programming model. Then, we carry out a complexity analysis, proving the ALPFP to be NP-complete. A modified particle swarm optimisation (MPSO) algorithm incorporating mutation as part of the position updating scheme is subsequently proposed. The MPSO is capable of finding very good solutions with small time requirements. Computational results are reported, demonstrating the efficiency and effectiveness of the proposed MPSO.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1090032 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:3:p:878-893
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2015.1090032
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().