EconPapers    
Economics at your fingertips  
 

A hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search for job shop scheduling problems

Fuqing Zhao, Zhongshi Shao, Junbiao Wang and Chuck Zhang

International Journal of Production Research, 2016, vol. 54, issue 4, 1039-1060

Abstract: Job shop scheduling problem (JSSP) is a typical NP-hard problem. In order to improve the solving efficiency for JSSP, a hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search is proposed in this paper, which combines the merits of Estimation of distribution algorithm and Differential evolution (DE). Meanwhile, to strengthen the searching ability of the proposed algorithm, a chaotic strategy is introduced to update the parameters of DE. Two mutation operators are adopted. A neighbourhood search (NS) algorithm based on blocks on critical path is used to further improve the solution quality. Finally, the parametric sensitivity of the proposed algorithm has been analysed based on the Taguchi method of design of experiment. The proposed algorithm was tested through a set of typical benchmark problems of JSSP. The results demonstrated the effectiveness of the proposed algorithm for solving JSSP.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1041575 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:4:p:1039-1060

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1041575

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:4:p:1039-1060