Quantification for the importance degree of engineering characteristics with a multi-level hierarchical structure in QFD
Weiqiang Jia,
Zhenyu Liu,
Zhiyun Lin,
Chan Qiu and
Jianrong Tan
International Journal of Production Research, 2016, vol. 54, issue 6, 1627-1649
Abstract:
Quantification for the importance degree of engineering characteristics (ECs) is an essential problem in quality function deployment. In real-world scenario, it is sometimes difficult to directly evaluate the correlation degree between ECs and customer requirements (CRs) as ECs are too abstract. Thus, the target ECs have to be further decomposed into several more detailed basic ECs and organised by a multi-level hierarchical structure. The paper investigates the quantification problem for the importance degree of such target ECs and tackles two critical issues. The first issue is how to deal with the uncertainties including fuzziness and incompleteness involved during the evaluation process. A fuzzy evidential reasoning algorithm-based approach is proposed to tackle this issue and derive the correlation degree between each of the basic ECs and the whole CRs. The second issue is how to deal with the interactions among the basic ECs decomposed from the same target EC during the aggregation process. A λ -fuzzy measure and fuzzy discrete Choquet integral-based approach is proposed to tackle this issue and aggregate these basic ECs. Final importance degree of the target ECs can then be obtained. At the end of this paper, a case study is presented to verify the feasibility and effectiveness of the method we propose.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1041574 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:6:p:1627-1649
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2015.1041574
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().