EconPapers    
Economics at your fingertips  
 

Simulation platform for anticipative plant-level maintenance decision support system

Hatice Ucar Guner, Ratna Babu Chinnam and Alper Murat

International Journal of Production Research, 2016, vol. 54, issue 6, 1785-1803

Abstract: Global competition and increasing customer expectations are forcing automobile manufacturers to improve their operations. Maintenance, being one of the most critical components in many industries, has a direct impact on the improvement of the overall production performance. In this paper, we introduce an anticipative plant-level maintenance decision support system (APMDSS) that provides guidance on corrective and preventive maintenance priorities based on the equipment bottleneck ranks with the objective of improving daily plant throughput. APMDSS anticipates the plant dynamics (i.e. bottlenecks, hourly buffer levels and likelihood of machine breakdowns) for upcoming shifts using starting state information of the production shift (e.g. equipment maintenance history, operational status of machines, buffer levels and scheduled production model mix). We also evaluate the performance of APMDSS using real data from an automotive body shop experiencing routine throughput difficulties due to frequent machine breakdowns. The results are compared with other methods from the literature and found to be superior in many settings.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1064179 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:6:p:1785-1803

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1064179

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:6:p:1785-1803