EconPapers    
Economics at your fingertips  
 

Visual hierarchical clustering of supply chain using growing hierarchical self-organising map algorithm

Manojit Chattopadhyay, Sourav Sengupta and B.S. Sahay

International Journal of Production Research, 2016, vol. 54, issue 9, 2552-2571

Abstract: The study identifies a need for efficient and robust visual clustering approach that can potentially deal with complex supply chain clustering problems. Based on the underlying philosophy of group technology, a growing hierarchical self-organising map algorithm (GHSOM) is proposed to identify a lower two-dimension visual clustering map that can effectively address supply chain clustering problems. The proposed approach provides optimal solutions by decomposing a large-sized supply chain problem into independent, small, manageable problems. It facilitates simple decision-making by exploring similar clusters that are represented by the neighbouring branches in the GHSOM map structure. Unlike other approaches in literature, the proposed approach can further attain good topological ordered representations of the various work order families, to be processed by clusters of supply units along with information on hierarchical sub-cell formation as identifiable from the visually navigable map. The proposed approach has been successfully applied on 16 benchmarked problems. The performance of GHSOM based on grouping efficacy measure outperformed the best results in literature.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1101175 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:9:p:2552-2571

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1101175

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:54:y:2016:i:9:p:2552-2571