A new model for supply chain network design with integrated assembly line balancing decisions
Jordi Pereira and
Mariona Vilà
International Journal of Production Research, 2016, vol. 54, issue 9, 2653-2669
Abstract:
Supply chain network design aims at the integration of the different actors of a supply chain within a single framework in order to optimise the total profit of the system. In this paper, we consider the integration of line balancing issues within the tactical decisions of the supply chain, and we offer a novel model and a solution approach for the problem. The new approach decomposes the problem into multiple line balancing problems and a mixed integer linear model, which is easier to solve than the previously available non-linear mixed integer formulation. The results show that the new method is able to solve previously studied models within a fraction of the reported running times, and also allows us to solve larger instances than those reported in earlier works. Finally, we also provide some analysis on the influence of the cost structure, the demand and the structure of the assembly process on the final configuration of the assemblies and the distribution network.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1115910 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:9:p:2653-2669
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2015.1115910
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().