Development and evaluation of a rolling horizon purchasing policy for cores
Toyin Clottey
International Journal of Production Research, 2016, vol. 54, issue 9, 2780-2790
Abstract:
A number of companies utilise end-of-use products (i.e. cores) for remanufacturing or recycling. An adequate supply of cores is needed for such activities. Establishing a purchasing policy for cores, over a finite planning horizon, requires multi-step ahead forecasts. Such forecasts are complicated by the fact that the number of cores in any future period depends upon previous sales and recent returns of the product. Distributed lag models have been used to capture this dependency for single-period ahead forecasts. We develop an approach to use distributed lag models to make multi-period ahead forecasts of net demand (i.e. demand minus returns), and investigate the cost implications, at a prescribed service level, of using such forecasts to purchase cores on a rolling horizon basis. Our results indicate that the effects of errors in the sales forecasts are negligible if sales follow an autoregressive pattern but are substantial when sales are more random. Dynamic estimation of the parameters in a rolling horizon environment yielded the most cost savings at high prescribed service levels (i.e. >0.95). Collectively, our results demonstrate the conditions in which companies can best leverage the dynamic nature of distributed lag models to reduce the acquisition costs over a finite horizon.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1142133 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:54:y:2016:i:9:p:2780-2790
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1142133
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().