Simulated annealing algorithms for the multi-manned assembly line balancing problem: minimising cycle time
Abdolreza Roshani and
Davide Giglio
International Journal of Production Research, 2017, vol. 55, issue 10, 2731-2751
Abstract:
Multi-manned assembly lines are often designed to produce big-sized products, such as automobiles and trucks. In this type of production lines, there are multi-manned workstations where a group of workers simultaneously performs different operations on the same individual product. One of the problems, that managers of such production lines usually encounter, is to produce the optimal number of items using a fixed number of workstations, without adding new ones. In this paper, such a class of problems, namely, the multi-manned assembly line balancing problem is addressed, with the objective of minimising the cycle time. A mixed-integer mathematical programming formulation is proposed for the considered problem. This model has the primary objective of minimising the cycle time for a given number of workstations and the secondary objective of minimising the total number of workers. Since the addressed problem is NP-hard, two meta-heuristic approaches based on the simulated annealing algorithm have been developed: ISA and DSA. ISA solves the problem indirectly while DSA solves it directly. The performance of the two algorithms are tested and compared on a set of test problems taken from the literature. The results show that DSA outperforms ISA in term of solution quality and computational time.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1181286 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:10:p:2731-2751
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1181286
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().