A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines
Elif Elcin Gunay and
Ufuk Kula
International Journal of Production Research, 2017, vol. 55, issue 10, 2897-2912
Abstract:
In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and uninstentionally. A major source of unintentional sequence alteration in automobile plants is the paint defects. A post-paint resequencing buffer, located before the final assembly is used to restore the altered sequence. Restoring the altered sequence back to the scheduled sequence requires three distinct operations in this buffer: Changing the positions (i.e. resequencing) of vehicles, inserting spare vehicles in between difficult models and replacing spare vehicles with paint defective vehicles. We develop a two-stage stochastic model to determine the optimal number of spare vehicles from each model-colour type to be placed into the Automated Storage and Retrieval System resequencing buffer that maximises the scheduled sequence achievement ratio (SSAR). The model contributes to the literature by explicitly considering above three distinct operations and random nature of paint defect occurrences. We use sample average approximation algorithm to solve the model. We provide managerial insights on how paint entrance sequence, defect rate and buffer size affect the SSAR. A value of stochastic solution shows that the model significantly outperforms its deterministic counterpart.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1227101 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:10:p:2897-2912
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1227101
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().