EconPapers    
Economics at your fingertips  
 

New scheduling algorithms and digital tool for dynamic permutation flowshop with newly arrived order

Weibo Liu, Yan Jin and Mark Price

International Journal of Production Research, 2017, vol. 55, issue 11, 3234-3248

Abstract: The permutation flowshop scheduling problem has been widely studied under static environment by assuming machines and jobs are available at the time of zero. However, in reality, new orders arrive at production systems randomly, which leads to sheer complexity in scheduling due to the dynamic changes given various constraints of resources. Previous studies simply attach new orders directly after the existing schedule. Recent study shows mixing jobs of old and new orders could result in better scheduling solutions. But the heuristic algorithms are still lacking to implement the job mixing policy. To address this problem, a novel scheduling strategy is herein proposed by integrating match-up strategy and real-time strategy (MR) in order to make use of the remaining time before the old order due date. Based on the new MR strategy, eleven new heuristics are introduced with ten existing and one new priority rules. Computational results illustrate the effectiveness of the new heuristics. A digital tool is developed for ease of application of these heuristics, and it is validated by case studies.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1285077 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:11:p:3234-3248

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1285077

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:11:p:3234-3248