EconPapers    
Economics at your fingertips  
 

Automated experience-based learning for plug and produce assembly systems

Daniele Scrimieri, Nikolas Antzoulatos, Elkin Castro and Svetan M. Ratchev

International Journal of Production Research, 2017, vol. 55, issue 13, 3674-3685

Abstract: This paper presents a self-learning technique for adapting modular automated assembly systems. The technique consists of automatically analysing sensor data and acquiring experience on the changes made on an assembly system to cope with new production requirements or to recover from disruptions. Experience is generalised into operational knowledge that is used to aid engineers in future adaptations by guiding them throughout the process. At each step, applicable changes are presented and ranked based on: (1) similarity between the current context and those in the experience base; (2) estimate of the impact on system performance. The experience model and the self-learning technique reflect the modular structure of the assembly machine and are particularly suitable for plug and produce systems, which are designed to offer high levels of self-organisation and adaptability. Adaptations can be performed and evaluated at different levels: from the smallest pluggable unit to the whole assembly system. Knowledge on individual modules can be reused when modules are plugged into other systems. An experimental evaluation has been conducted on an industrial case study and the results show that, with experience-based learning, adaptations of plug and produce systems can be performed in a shorter time.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1207817 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:13:p:3674-3685

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2016.1207817

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:13:p:3674-3685