Tool path generation via the multi-criteria optimisation for flat-end milling of sculptured surfaces
YaoAn Lu,
Ye Ding and
LiMin Zhu
International Journal of Production Research, 2017, vol. 55, issue 15, 4261-4282
Abstract:
A method of generating optimal tool paths for sculptured surface machining with flat-end cutters is presented in this paper. The inclination and tilt angles, as well as the feed directions of the cutter at each cutter contact point on a machining path are optimised as a whole so that the machining width of the tool path can be as large as possible, and concerns such as smooth cutter motion, gouging avoidance, scallop height and machining widths overlap are also considered when calculating a path. A multi-criteria tool path optimisation model is introduced, and it is converted into a single objective optimisation with the weighted sum method. The Differential Evolution (DE) algorithm is suitable for solving this highly non-linear problem. However, the searching process of the DE algorithm may be trapped in local minima due to large number of design variables. Therefore, an algorithm combining the DE algorithm and the sequence linear programming algorithm is developed to solve this optimisation model. The proposed method is applied to two freeform surfaces to illustrate its effectiveness.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1232496 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:15:p:4261-4282
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1232496
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().