A phase I multi-modelling approach for profile monitoring of signal data
Marco Grasso,
Bianca Maria Colosimo and
Fugee Tsung
International Journal of Production Research, 2017, vol. 55, issue 15, 4354-4377
Abstract:
Many industrial processes exhibit multiple in-control signatures, where signal data vary over time without affecting the final product quality. They are known as multimode processes. With regard to profile monitoring methodologies, the existence of multiple in-control patterns entails the study and development of novel monitoring schemes. We propose a method based on coupling curve classification and monitoring that inherits the so-called ‘multi-modelling framework’. The goal is to design a monitoring tool that is able to automatically adapt the control chart parameters to the current operating mode. The proposed approach allows assessing which mode new data belong to before applying a control chart to determine if they are actually in control or not. Contrary to mainstream multi-modelling techniques, we propose extending the classification step to include a novelty detection capability, in order to deal with the possible occurrence of in-control operating modes during the design phase that were not observed previously. The functional data depth paradigm is proposed to design both the curve classification and the novelty detection algorithm. A simulation study is presented to demonstrate the performances of the proposed methodology, which is compared against benchmark methods. A real case study is presented too, which consists of a multimode end-milling process, where different operating conditions yield different cutting force profile patterns.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1251626 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:15:p:4354-4377
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1251626
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().