EconPapers    
Economics at your fingertips  
 

Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain

Dong Li and Xiaojun Wang

International Journal of Production Research, 2017, vol. 55, issue 17, 5127-5141

Abstract: With large volume of product flows and complex supply chain processes, more data than ever before is being generated and collected in supply chains through various tracking and sensory technologies. The purpose of this study is to show a potential scenario of using a prototype tracking tool that facilitate the utilisation of sensor data, which is often unstructured and enormous in nature, to support supply chain decisions. The research investigates the potential benefits of the chilled food chain management innovation through sensor data driven pricing decisions. Data generated and recorded through the sensor network are used to predict the remaining shelf-life of perishable foods. Numerical analysis is conducted to examine the benefit of proposed approach under various operational situations and product features. The research findings demonstrate a way of modelling pricing and potential of performance improvement in chilled food chains to provide a vision of smooth transfer and implementation of the sensor data driven supply chain management. The research finding would encourage firms in the food industry to explore innovation opportunities from big data and develop proper data driven strategies to improve their competitiveness.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1047976 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:17:p:5127-5141

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1047976

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:17:p:5127-5141