An MILP model and a hybrid evolutionary algorithm for integrated operation optimisation of multi-head surface mounting machines in PCB assembly
Jiaxiang Luo,
Jiyin Liu and
Yueming Hu
International Journal of Production Research, 2017, vol. 55, issue 1, 145-160
Abstract:
This paper focuses on an operation optimisation problem for a class of multi-head surface mounting machines in printed circuit board assembly lines. The problem involves five interrelated sub-problems: assigning nozzle types as well as components to heads, assigning feeders to slots and determining component pickup and placement sequences. According to the depth of making decisions, the sub-problems are first classified into two layers. Based on the classification, a two-stage mixed-integer linear programming (MILP) is developed to describe it and a two-stage problem-solving frame with a hybrid evolutionary algorithm (HEA) is proposed. In the first stage, a constructive heuristic is developed to determine the set of nozzle types assigned to each head and the total number of assembly cycles; in the second stage, constructive heuristics, an evolutionary algorithm with two evolutionary operators and a tabu search (TS) with multiple neighbourhoods are combined to solve all the sub-problems simultaneously, where the results obtained in the first stage are taken as constraints. Computational experiments show that the HEA can obtain good near-optimal solutions for small size instances when compared with an optimal solver, Cplex, and can provide better results when compared with a TS and an EA for actual instances.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1200154 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:1:p:145-160
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1200154
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().