EconPapers    
Economics at your fingertips  
 

Incorporation of engineering knowledge into the modeling process: a local approach

Heeyoung Kim, Justin T. Vastola, Sungil Kim, Jye-Chyi Lu and Martha A. Grover

International Journal of Production Research, 2017, vol. 55, issue 20, 5865-5880

Abstract: Process modelling is the foundation of developing process controllers for monitoring and improving process/system health. Modelling process behaviours using a pure empirical approach might not be feasible due to limitation in collecting large amount of data. Engineering models provide valuable information about processes’ general behaviours but they might not capture distinct characteristics in the particular process studied. Many recent publications presented various ideas of using limited experimental data to adjust engineering models for making them suitable for certain applications. However, the focuses there are global adjustments, where modification of engineering models impacts the entire model-application region. In practice, some engineering models are only valid in a part of experimental data domain. Moreover, many discrepancies between engineering models and experimental data are in local regions. For example, in a chemical vapour deposition process, at high temperatures a process may be described by a diffusion limited model, while at low temperatures the process may be described by a reaction limited model. To address these problems, this article proposes two approaches for integrating engineering and data models: local model calibration and local model averaging. Through the local model calibration, the discrepancies between engineering’s first-principle models and experimental data are resolved locally based on experts’ feedbacks. To combine models adjusted locally in some regions and also models required little adjustments in other regions, a model averaging procedure based on local kernel weights is proposed. The effectiveness of the proposed method is demonstrated on simulated examples, and compared against a well-known existing global-adjustment method.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1278082 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:20:p:5865-5880

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2016.1278082

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:20:p:5865-5880