A multi-objective model for multi-project scheduling and multi-skilled staff assignment for IT product development considering competency evolution
Rong Chen,
Changyong Liang,
Dongxiao Gu and
Joseph Y-T. Leung
International Journal of Production Research, 2017, vol. 55, issue 21, 6207-6234
Abstract:
We address a multi-skill project scheduling problem for IT product development in this article. The goal is for product development managers to be able to generate an initial schedule at an early stage of development activities. Due to the complexity of the product structure and functionality, an IT product development effort is divided into multiple projects. Each project includes several tasks, and each task must be completed by an employee who has mastered a certain skill to complete it. A pool of multi-skilled employees is available, and the employees’ skill efficiencies are influenced by both learning and forgetting phenomena. Based on the real-world demands of product development managers, three objectives are simultaneously considered: skill efficiency gain, product development cycle time and costs. To solve this problem, we propose a multi-objective non-linear mixed integer programming model. The Non-dominated Sorting Genetic Algorithm II (NSGA-II)is designed to generate an approximation to the optimal Pareto front of this NP-hard multi-objective optimisation problem. The algorithm produces feasible schedules for all the development projects using the serial schedule generation scheme. We adopt penalty values and individual employee adjustments to address resource conflicts and constraint violations. A weighted ideal point method is used to select the final solution from the approximate Pareto solution set. An application case of a new electrical energy saving product implementation in a leading electrical device company in China is used to illustrate the proposed model and algorithm.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1326641 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:21:p:6207-6234
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1326641
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().