Data mining for enhanced driving effectiveness: an eco-driving behaviour analysis model for better driving decisions
Chia-Yu Hsu,
Sirirat Sae Lim and
Chin-Sheng Yang
International Journal of Production Research, 2017, vol. 55, issue 23, 7096-7109
Abstract:
With the growing demand for energy efficient vehicles, automobile companies are constantly searching for better ways to study their customers’ driving behaviour for effective new product design and development. One emerging driving behaviour among modern, eco-friendly drivers is the utilising of advanced vehicle technology for smarter, safer and more fuel-efficient driving. While many eco-driving studies focus on minimising fuel consumption, little attention is paid to how the behaviour of an individual driver and the type of vehicle used impact driving effectiveness. This study addresses this gap by proposing a novel overall drive effectiveness index that uses data mining for better driving decisions. Utilising data mining techniques, the index examines the impact of driving behaviour on driving effectiveness. A novel fuel consumption prediction model based on vehicle speed, engine speed and engine load was constructed. This decision-making support model accurately predicts real-time fuel consumption based on different driving behaviours, and hence, the driving effectiveness. Both the proposed index and fuel consumption model can be used to support decision-making in new product design and development.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1349946 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:23:p:7096-7109
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1349946
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().