An efficient method for dynamic-demand joint replenishment problem with multiple suppliers and multiple vehicles
He-Yau Kang,
Amy H.I. Lee,
Chien-Wei Wu and
Cheng-Han Lee
International Journal of Production Research, 2017, vol. 55, issue 4, 1065-1084
Abstract:
How to improve competitive edges to meet rapidly changing market environment and dynamic customer needs is critical for the survival and success of firms these days. A good supply chain and inventory management is a necessity in the intensive competitive market. This paper considers a dynamic-demand joint replenishment problem with multiple vehicle routing. The problem is first formulated as a mixed integer programming model with an objective to minimise total costs, which include ordering cost, purchase cost, production cost, transportation cost and holding cost, under a prerequisite that inventory shortage is prohibited in the system. A particle swarm optimisation model is proposed next to solve large-scale problems which are computationally difficult. A case study of a touch panel manufacturer is presented to examine the practicality of the models.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1218564 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:4:p:1065-1084
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1218564
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().