A simulation-optimisation approach for supply chain network design under supply and demand uncertainties
Roba W. Salem and
Mohamed Haouari
International Journal of Production Research, 2017, vol. 55, issue 7, 1845-1861
Abstract:
We investigate a three-echelon stochastic supply chain network design problem. The problem requires selecting suppliers, determining warehouses locations and sizing, as well as the material flows. The objective is to minimise the total expected cost. An important feature of the investigated problem is that both the supply and the demand are uncertain. We solve this problem using a simulation-optimisation approach that is based on a novel hedging strategy that aims at capturing the randomness of the uncertain parameters. To determine the optimal hedging parameters, the search process is guided by particle swarm optimisation procedure. We present the results of extensive computational experiments that were conducted on a large set of instances and that provide evidence that the proposed hedging strategy constitutes an effective viable solution approach.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1174788 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:7:p:1845-1861
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1174788
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().